
The state of a quantum system  
Let us first look at how we specify the state for a classical system. Once again, we 

use the ubiquitous billiard ball. As any player knows, there are three important 

aspects to its motion: position, velocity and spin (angular momentum around its 

centre). Knowing these quantities we can in principle (no friction) predict its 

motion for all times. We have argued before that quantum mechanics involves an 

element of uncertainty. We cannot predict a state as in classical mechanics, we 

need to predict a probability. We want to be able to predict the outcome of a 

measurement of, say, position. Since position is a continuous variable, we cannot 

just deal with a discrete probability, we need a probability density, To understand 

this fact look at the probability that we measure x  to be between X and 

XX  . If X   is small enough, this probability is directly proportional to the 

length of the interval  
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Here )(XP  is called the probability density. The standard statement that the total 

probability is one translates to an integral statement,  
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(Here we use the lower case x  where we have used X  before; this a standard 

practice in Quantum Mechanics.)  Since probabilities are always positive, we 

require 0)( xP .   

Now let us try to look at some aspects of classical waves, and see whether they can 

help us to guess how to derive a probability density from a wave equation. The 

standard example of a classical wave is the motion of a string. Typically a string 

can move up and down, and the standard solution to the wave equation  
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can be positive as well as negative. Actually the square of the wave function is a 

possible choice for the probability (this is proportional to the intensity for 

radiation). Now let us try to argue what wave equation describes the quantum 

analog of classical mechanics, i.e., quantum mechanics.  

The starting point is a propagating wave. In standard wave problems this is given 

by a plane wave, i.e.,  
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This describes a wave propagating in the x  direction with wavelength 

k/2 , and frequency  2/ . We interpret this plane wave as a 

propagating beam of particles. If we define the probability as the square of the 

wave function, it is not very sensible to take the real part of the exponential: the 

probability would be an oscillating function of x  for given t . If we take the 

complex function ))(exp(   tkxiA , however, the probability, defined as 

the absolute value squared, is a constant ( 2|| A ) independent of x  and t , which is 

very sensible for a beam of particles. Thus we conclude that the wave function 

),( tx  is complex, and the probability density is  2|),(| tx .  

Using de Broglie's relation  
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we find  
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The other of de Broglie's relations can be used to give  
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One of the important goals of quantum mechanics is to generalise classical 

mechanics. We shall attempt to generalise the relation between momenta and 

energy,  
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to the quantum realm.  



Notice that  
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Using this we can guess a wave equation of the form  
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Actually using the definition of energy when the problem includes a potential,  
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(when expressed in momenta, this quantity is usually called a "Hamiltonian") we 

find the time-dependent Schrödinger equation  
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We shall only spend limited time on this equation.  

Initially we are interested in the time-independent Schrödinger equation, where the 

probability 2|),(| tx  is independent of time. In order to reach this simplification, 

we find that ),( tx  must have the form  
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If we substitute this in the time-dependent equation, we get (using the product rule 

for differentiation)  
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Taking away the common factor  )/( iEte    we have an equation for )(x  that no 

longer contains time, the  time-independent Schrödinger equation  
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The corresponding solution to the time-dependent equation is the standing wave 

(13). 

 

Analysis of the wave equation  
One of the important aspects of the Schrödinger equation(s) is its linearity. For the 

time independent Schrödinger equation, which is usually called an eigenvalue 

problem, the only consequence we shall need here, is that if )(x  is a eigen 

function (a solution for iE ) of the Schrödinger equation, so is )(xA i . This is 

useful in defining a probability, since we would like  
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Given )(xi  we can thus use this freedom to "normalise" the wave function! (If 

the integral over 2|)(| xi  is finite, i.e., if )(xi  is ``normalisable''.)  

As an example suppose that we have a Hamiltonian that has the function 
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The normalised form of this function is  
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We need to know a bit more about the structure of the solution of the Schrödinger 

equation - boundary conditions and such. Here we shall postulate the boundary 

conditions, without any derivation.  



1. )(xi  is a continuous function, and is single valued.  
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is a probability density.  

3. xx  /)(  is continuous except where )(xV  has an infinite discontinuity.  

Energy function  

Of course the kinetic energy is 2

2
1mv , with

dt
drrv   . The sum of kinetic and 

potential energy can be written in the form  
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Actually, this form is not very convenient for quantum mechanics. We rather work 

with the so-called momentum variable vmp 
 . Then the energy functional takes 

the form  
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The energy expressed in terms of p  and r  is often called the (classical) 

Hamiltonian, and will be shown to have a clear quantum analog. 

 

Glossary  

1. The state of a quantum system   -  состояние квантовой системы 

2. ubiquitous (syn: general)  -  повсеместный, вездесущий 

3. quantity - величина 

4. friction - трение 



5. predict – предсказывать 

6. argue – аргументировать, обсуждать 

7. involve – вызывать, приводить 

8. probability - вероятность 

9. the outcome – исход, результат, последствие 

10. continuous – непрерывный, сплошной 

11. variable – переменная (величина), параметр 

12. a probability density – плотность вероятности 

13. measure – мерить 

14. statement – утверждение 

15.  the lower case - нижний регистр, регистр строчных букв 

16. to guess - полагать, считать 

17. to derive – выводить, брать производную 

18. string – струна 

19. solution – решение 

20. the wave equation – волновое уравнение 

21. a propagating wave – распространяющаяся волна 

22. realm – область (значений) 

23. spend – тратить, расходовать  

24. substitute – заменять 

25. the product - произведение 

26. rule - правило 

27. differentiation – дифференцирование 

28. no longer – уже не, больше не  

29. linearity – линейность 

30. eigenvalue – собственное (характеристическое) значение 

31. consequence – важность, значимость 

32. derivation – дифференцирование 

33. discontinuity - разрыв, нарушение непрерывности. 

 


