The state of a quantum system

Let us first look at how we specify the state for a classical system. Once again, we
use the ubiquitous billiard ball. As any player knows, there are three important
aspects to its motion: position, velocity and spin (angular momentum around its
centre). Knowing these quantities we can in principle (no friction) predict its
motion for all times. We have argued before that quantum mechanics involves an
element of uncertainty. We cannot predict a state as in classical mechanics, we
need to predict a probability. We want to be able to predict the outcome of a
measurement of, say, position. Since position is a continuous variable, we cannot
just deal with a discrete probability, we need a probability density, To understand
this fact look at the probability that we measure X to be between X and
X +AX . 1f AX is small enough, this probability is directly proportional to the
length of the interval

P(X <x<X+AX)=P(X)AX (1)
Here P (X ) is called the probability density. The standard statement that the total

probability is one translates to an integral statement,
(0.0)
| dx P (.X' ) =1 _ )
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(Here we use the lower case X where we have used X before; this a standard
practice in Quantum Mechanics.) Since probabilities are always positive, we
require P(x)20.
Now let us try to look at some aspects of classical waves, and see whether they can
help us to guess how to derive a probability density from a wave equation. The
standard example of a classical wave is the motion of a string. Typically a string
can move up and down, and the standard solution to the wave equation
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can be positive as well as negative. Actually the square of the wave function is a
possible choice for the probability (this is proportional to the intensity for
radiation). Now let us try to argue what wave equation describes the quantum
analog of classical mechanics, i.e., quantum mechanics.
The starting point is a propagating wave. In standard wave problems this is given
by a plane wave, 1.e.,

v = Aexp(i(kx— wt + 9)) )
This describes a wave propagating in the X direction with wavelength
A=2r/k, and frequency V=@/27. We interpret this plane wave as a
propagating beam of particles. If we define the probability as the square of the
wave function, it is not very sensible to take the real part of the exponential: the

probability would be an oscillating function of X for given f. If we take the

complex function A exXp(i(kx— @t +¢@)), however, the probability, defined as

the absolute value squared, is a constant (| A |2) independent of X and 7, which is

very sensible for a beam of particles. Thus we conclude that the wave function

W (x,t) is complex, and the probability density is |l//(x,t )|2 :
Using de Broglie's relation

p=h/A (5)
we find

p=nhk (6)
The other of de Broglie's relations can be used to give

E=hv=ho (7)
One of the important goals of quantum mechanics is to generalise classical
mechanics. We shall attempt to generalise the relation between momenta and

energy,
E=mv?/2=p?/2m (8)

to the quantum realm.



Notice that

py(x,0)=hky(x,t)= ﬁaw(x,t) (9a)
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Ew(x,r>=hww<x,r>=hi§w(m) (ob)
t

Using this we can guess a wave equation of the form
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Actually using the definition of energy when the problem includes a potential,

mv2 2
E=—+V(x)=p—+V(x) (11)
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(when expressed in momenta, this quantity is usually called a "Hamiltonian") we
find the time-dependent Schrodinger equation
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hi—wy(x,t)=———w(x,)+V(x)w(x,t (12)
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We shall only spend limited time on this equation.

Initially we are interested in the time-independent Schrodinger equation, where the
probability |l//(x,t ) |2 is independent of time. In order to reach this simplification,

we find that ¥/ (Xx,) must have the form

W (x,0)=@(x)-eFD (13)
If we substitute this in the time-dependent equation, we get (using the product rule
for differentiation)

2 2
Ey () =="" 50 O o)+ V(2 (x1) (14
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Taking away the common factor e= we have an equation for (?(Xx) that no

longer contains time, the time-independent Schriodinger equation
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qu(x)=—;;c2g0(x)+V(x) () (15)

The corresponding solution to the time-dependent equation is the standing wave

(13).

Analysis of the wave equation

One of the important aspects of the Schrodinger equation(s) is its linearity. For the

time independent Schrodinger equation, which is usually called an eigenvalue

problem, the only consequence we shall need here, is that if @(X) is a eigen

function (a solution for El.) of the Schrédinger equation, so is Ang. (x). This is

useful in defining a probability, since we would like
T 2 2
jdx[Af|e(x)]F =1 (17)
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Given ng. (x) we can thus use this freedom to "normalise" the wave function! (If

the integral over |§Dl, (x) |2 1s finite, 1.e., if ng. (x) is “normalisable".)

As an example suppose that we have a Hamiltonian that has the function

2

ng. (x)=e 2 as eigen function. This function is not normalised since

(e 0]
dx|p.(x) =1 (18)
—Q0
The normalised form of this function is
1 2
ﬁe X /2 ) (19)
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We need to know a bit more about the structure of the solution of the Schrodinger
equation - boundary conditions and such. Here we shall postulate the boundary

conditions, without any derivation.



1. ng. (x) is a continuous function, and is single valued.

2. Ofdx | ®, (x) |2 must be finite, so that
—

P()C) — - |§Dz ()C)|2 (20)
g (0

is a probability density.

3. 0@(x)/0x is continuous except where V' (X) has an infinite discontinuity.

Energy function

1 . dr
Of course the kinetic energy is —mv?, withv =7 =" The sum of kinetic and

dt

potential energy can be written in the form
1
E=2mv2+V(r) (21)

Actually, this form is not very convenient for quantum mechanics. We rather work
with the so-called momentum variable ]3 = mV . Then the energy functional takes

the form

2
E=P 4 V(r) (22)
2m

The energy expressed in terms of ]3 and 7 is often called the (classical)

Hamiltonian, and will be shown to have a clear quantum analog.

Glossary

1. The state of a quantum system - COCTOSIHHE KBAHTOBOW CHCTEMBI
2. ubiquitous (syn: general) - moBceMecCTHBIN, BE3ECYIIHIMA

3. quantity - BeTM4MHa

4. friction - TpeHue



5. predict — npeacka3pIBaTh

6. argue — apryMeHTUPOBaTh, 0OCYK1aTh

7. involve — BbI3bIBATh, IPUBOAUTD

8. probability - BeposiTHOCTb

9. the outcome — ucxop, pe3yapTaT, MOCIEACTBUE
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continuous — HENPEPHIBHBIN, CIJIOMIHON

variable — nepemeHHas (BeMUKHA), TApAMETP

a probability density — mJIOTHOCTb BEpOSITHOCTH
measure — MEpUTh

statement — yTBep KAcHUE

the lower case - HIDKHUI pEeTUCTp, PETUCTP CTPOUYHBIX OYKB
to guess - nmojaraTb, CUYUTaTh

to derive — BBIBOAUTH, OpaTh MPOU3BOIHYIO

string — cTpyHa

solution — pemeHue

the wave equation — BOJJTHOBOE ypaBHEHHUE

a propagating wave — paclipOCTPaHSIOIIAsCs BOJTHA
realm — o61acTh (3HAUYCHMI)

spend — TpaTUTh, pacXo0q0BaTh

substitute — 3aMeHATh

the product - npousseeHue

rule - mpaBuiIO

differentiation — nudpepenupoBanue

no longer — yxxe He, 60JbIIIE HE

linearity — TMHEHHOCTH

eigenvalue — co6cTBEHHOE (XapaKTEPUCTUUECKOE) 3HAUCHUE
consequence — BaXKHOCTh, 3HAUNMOCTh

derivation — nud depeniupopanue

discontinuity - pa3pbIB, HapyllIEHUE HEMTPEPHIBHOCTH.



